
Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 1 -

Beans

A Bean is a reusable software component with which we can create
powerful applications and applets. Beans can provide support to the
programmers to reuse and integrate the existing components. These
components can be linked together to create applets, application or even new
Beans for recess by others.

There are many builder tools that support to create beans. These

provide a GUI based design environment to create and test the beans. The
simple builder tool for creating Beans is Beans Development Kit (BDK)
which can be downloaded freely from the Sun’s java website. We can also
develop the beans with NetBeans builder tool.

Once you install the BDK, you can create and test your beans. The

BDK root directory contains the following sub-directories.

beanbox Contains the run.bat file, which is used to load the GUI
 environment, and other folders.

jars Contains the jar files for the default beans.

lib Contains a jar file which is used to trace the methods.

doc Contains documentation files.

 The GUI environment provided by BDK contains 4 windows. They are:
Tool Box, Bean Box, Properties Window and Method Tracer.

Tool Box:

 When the BDK environment is
 opened, it automatically loads the
 toolbox with all the beans it finds
 within the jar files contained in
 jars directory. We can also load
 beans from jar files located else
 where by using load jar option of
 file menu of beanbox.

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 2 -

BeanBox

 It is a container which provides

the environment to test the
beans. The menus of this Window

 are as follows.

File

Save Saves the state of the beans currently in the
 BeanBox, including size, position,..

Make Applet Creates an Applet for the BeanBox contents

Load Loads the previously saved BeanBox

Load jar Loads the bean jar files to the ToolBox

Print Prints an image of the BeanBox contents

Clear Clears the BeanBox container.

Exit Closes the BeanBox.

Edit

Cut Cuts the selected Bean.

Copy Copies the selected Bean.

Paste Pastes the previously cut or copied bean.

Events Lists the selected bean’s event firing methods.

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 3 -

Properties Window

 This window shows the
properties of the selected bean.
We can customize the properties
by making changes for the
selected bean.

Method Tracer

This window shows the debugging
messages and helps to trace the method
calls.

The package java.beans conatins classes and interfaces that can
support to create beans, edit the properties of them, bound a bean to
other,…

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 4 -

Procedure to execute Java Beans

1. Compile the Bean Source Files.

2. Create a Manifest file as follows with name BeanFile.mft
Name: BeanFile.class
Java-Bean: True

3. Create a JAR file using the above manifest file and class file as follows

jar -cvfm JAR-File.jar Manifest-File.mft Bean-File.class

 -c creates a new Java ARchieve file
 -v displays the verbose output
 -f specifies the new archieve file name
 -m includes manifest information from a manifest file

4. Open \BDK\beanbox directory and run the batch file run.bat.

5. Select loadjar option from File menu of the BeanBox window.

6. Select the JAR file which you have created.

7. You will find that your Bean will be added to the ToolBox.

8. Click on the Bean you have created, from the ToolBox, and drop it on
BeanBox. You will find, your bean will appear on the BeanBox.

A simple program on Beans to draw a rectangle.

import java.io.*;
import java.awt.*;

public class BeanTest extends Canvas implements Serializable
{
 public BeanTest()
 {
 setBackground(Color.green);
 setSize(50,50);
 }
}

 Compile the above program and prepare a manifest file as follows.

Name: BeanTest.class
Java-Bean: True BeanTest.mft

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 5 -

 Create a jar file with the help of the above .class file and .mft file as

follows.

jar -cvfm Test.jar BeanTest.mft BeanTest.class

 Open BeanBox, chosse load jar option from the file menu and then
select the Test.jar file which you have created.

 The Bean will be loaded into the ToolBox. Click on the Bean. The

mouse pointer changes to cross hair. Now drop the cursor on the
BeanBox. Your bean will be added to the BeanBox.

Bean Properties:

The properties of a Bean can be categorized into 4 types. They are:

1. Simple Property :

Properties are the aspects of a Bean’s appearance and behaviour that are
changeable at design time. Properties are private values accessed through
getter and setter methods.

2. Bound Property :

Some times, it may be necessary when a Bean property changes,
another Bean object may want to be notified of the change and to react to
the change. This is called a bound property. When ever a bound property
changes, notification of the change is sent to interested listeners. A Bean
containing a bound property must maintain a list of property change listeners
and alert them when the bound property changes. To do this we should
implement the PropertyChangeListener interface and extend
PropertyChangeSupport class.

3. Constrained Property :

Constrained properties are so named because they provide a mechanism
whereby a property can be restricted to a certain range of values. A
Bean property is said to be constrained when any change to that property
can be vetoed. A constrained property allows the listeners to veto (refuse or
reject) changes by throwing PropertyVetoException. The major difference
between bound and constrained properties is that constarined properties
fire properety change events before they are changed and bound
properties fire events after they have been changed.

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 6 -

4. Indexed Property :

Some times it is useful to have a list of properties in a Bean (like List
component in AWT). Properties of a Bean of this sort are called indexed
properties because they are accessed via an index into the list. Indexed
properties are identified solely by the names of the accessor (a setXXX()
method is called an accessor) and mutator (a getXXX() method is called a
mutator) methods. The actual list may be stored in an array or any other
indexeable data structure. These properties may be bound or constrained.
The Bean class must implement the necessary add and remove listener
methods and also fire property change events when an indexed property is
being changed.

Program to add a simple property to the bean

import java.io.*;
import java.awt.*;
import java.beans.*;

public class BeanTest extends Canvas implements Serializable
{
 Color col=Color.green;
 public BeanTest()
 {
 setBackground(Color.green);
 setSize(100,100);
 }

 public void setColor(Color c)
 {
 col=c;
 repaint();
 }

 public Color getColor()
 {
 return col;
 }

 public void paint(Graphics g)
 {
 g.setColor(col);
 g.fillRect(10,10,20,20);
 }
}

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 7 -

Customization:

Customization provides a means for modifying the appearance and

behavior of a bean within an application builder so it meets your specific
needs. Customization is supported in two ways: by using property editors
and bean customizers.

Property Editors:

It is a tool for customizing a particular property type. These are displayed

in or activated from property sheets. A property sheet determines a
peroperty’s type, searches for a relevant property editor and displays the
property’s current value.

Property editors must implement the PropertyEditor interface, which

provides methods that satisfy how a property should be displayed in a
property sheet.

Customizer:

A Customizer is an application that specifically targets a Bean's
customization. Sometimes properties are insufficient for representing a
Bean's configurable attributes. Customizers are used where sophisticated
instructions would be needed to change a Bean, and where property editors
are too primitive to achieve bean customization.

All customizers must:

 extend java.awt.Component or one of its subclasses.

 implement the java.beans.Customizer interface This means
implementing methods to register PropertyChangeListener objects,
and firing property change events at those listeners when a change to
the target Bean has occurred.

 implement a default constructor.

 associate the customizer with its target class via
BeanInfo.getBeanDescriptor().

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 8 -

Introspection:

Introspection is the automatic process of analyzing a Bean's design
patterns to reveal the Bean's properties, events, and methods. This process
controls the publishing and discovery of Bean operations and properties.

The BeanInfo interface of the java.beans package defines a set of

methods that allow bean implementors to provide explicit information about
their beans. By specifying BeanInfo for a bean component, a developer can
hide methods, specify an icon for the toolbox, provide descriptive names for
properties, define which properties are bound properties, and much more.

The Introspector class provides descriptor classes with information

about properties, events, and methods of a Bean. Methods of this class
locate any descriptor information that has been explicitly supplied by the
developer through BeanInfo classes. Then the Introspector class applies the
naming conventions to determine what properties the Bean has, the events
to which it can listen, and those which it can send.

Persistence:

A Bean has the property of persistence when its properties, fields, and

state information are saved to and retrieved from storage. Component
models provide a mechanism for persistence that enables the state of
components to be stored in a non-volatile place for later retrieval.

Serialization:

The mechanism that makes persistence possible is called serialization.

Object serialization means converting an object into a data stream and
writing it to storage. Any applet, application, or tool that uses that Bean can
then "reconstitute" it by deserialization. The object is then restored to its
original state. When a Bean instance is serialized, it is converted into a data
stream and is written to storage. All beans must persist. To persist, the
beans must support serialization by implementing Serializable interface.
The BeanBox writes serialized beans to a file with .ser extension. This can be
done in 3 ways. They are:

1. Automatic Serialization

2. Selective Serialization

3. Complete Serialization

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 9 -

Automatic serialization:

The Serializable interface provides automatic serialization by using the

Java Object Serialization tools. By marking our class with Serializable, we are
telling Java Virtual Machine that we have make sure that our class will work
with default serialization.

Selective Serialization:

When we do not want all fields to be serialized, we can use transient

keyword to exclude fields from serilazation in a Serializable object. The
default serialization will not serialize transient and static fields. We use the
transient modifier to mark the fields as follows:

 transient int quantity;

Complete Serilization:

Use the Externalizable interface when you need complete control over

your Bean's serialization (for example, when writing and reading a specific
file format). To use the Externalizable interface you need to implement two
methods: readExternal and writeExternal. Classes that implement
Externalizable must have a no-argument constructor.

Working with Events:

import java.awt.*;
import java.awt.event.*;
import java.beans.*;
import java.io.Serializable;

public class LabelBean extends Component implements Serializable
{
 String label="Press";

 public LabelBean()
 {
 setBackground(Color.lightGray);
 setSize(150,150);
 }

 public void setLabel(String lbl)
 {
 label=lbl;
 return;
 }

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 10 -

 public String getLabel()
 {
 return label;
 }

public void paint(Graphics g)
{
 int width = getSize().width;
 int height = getSize().height;
 g.setColor(getForeground());
 g.setFont(getFont());
 g.drawRect(2, 2, width - 4, height - 4);
 FontMetrics fm = g.getFontMetrics();
 g.drawString(label, (width - fm.stringWidth(label)) / 2,
 (height + fm.getMaxAscent() - fm.getMaxDescent()) / 2);
}
}

Compile the above Bean and create a jar for that. Open BeanBox and
load the jar of the above Bean. Click on Juggler Bean and drop it on
BeanBox. Select LabelBean from ToolBox and create two instances of that
Bean. Change the Label of one instance to Start and Stop for the other. Now
select the Start LabelBean, choose Editeventsmousemouseclicked from
BeanBox Menubar. A Rubberband apperas. Drop this on Juggler Bean. Then
you will be prompted to choose an event from Event Target Dialog Box of
the Juggler Bean. Choose start and click Ok.

Now select Stop LabelBean and choose Editeventsmousemouseclicked
from BeanBox Menubar. A Rubberband appears. Drop this on Juggler Bean.
Then you will be prompted to choose an event from Event Target Dialog Box
of the Juggler Bean. Choose stop and click OK.

In both the cases, the BeanBox automatically prepares an Adapter class for
the events. Now click on Stop LabelBean, the JugglerBean stops juggling.
When you click on Start LabelBean it starts juggling.

Adv. Java Beans

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 11 -

Making Applets for the Beans:

You can make applets for the beans present in the BeanBox. To do
this, select makeapplet Option from File Menu of BeanBox Menubar. Make
proper settings in the Make an Applet Dialog Box. BeanBox automatically
compiles and writes class files for the selected Bean. The default path for the
generated files is \beanbox\tmp\myApplet. Just double click on the .html
file in this directory. If your web browser is Java enabled, then the Bean will
be displayed on the web page. Otherwise view this .html file with
appletviewer utility which comes with JDK.

Saving the status of the Beanbox:

 To save the status of the BeanBox, choose save option from File Menu
of BeanBox window. You will be prompted to give a name for saving the
status. Give a name for the file. Loading of this file automatically loads not
only the Beans and also their status, that you have worked with previously
when you save this file.

